

National Education Society (R.) Jawaharlal Nehru New College of Engineering, Shivamogga

(Approved by AICTE, New Delhi, Certified by UGC 2f & 12B, Accredited by NAAC –'B', UG programs:CE,ME,EEE,ECE,CSE,ISE, ETE PG Programs: MBA, acredited by NBA:1.7.2022 to 30.6.2025, Recognized by Govt. of Karnataka and Affiliated to VTU, Belagavi)

INTERNAL QUALITY ASSURANCE CELL (IQAC)

SI. CO,S Branch Sem Subject No 1. To remember the definition of Laplace transform, Fourier series, Fourier transform, Ztransform, formulae of numerical methods and calculus of variation. 2. To understand the concept of periodic function, Unit step function, Convolution theorem in Laplace transform, Fourier series of period 2 pi, Transform Calculus, Fourier Series and arbitrary period 21, half range series, Fourier 3 Numerical Techniques 1 transform and Z- transform, numerical methods **Mathematics** and calculus of variations (18MAT31) 3. To apply the concept of Laplace transform in 2nd and higher order linear differential equations. MECH Harmonic analysis in Fourier series, Z-transform in difference equations, numerical solution of ODE's by various numerical methods and Euler's equation, Geodesics in Calculus of variation. 1. Understand the fundamental concepts and principles of stresses, strains, elastic constants, volumetric strain and thermal stresses. Mechanics of Materials 2. Analyze stresses on inclined plane and 2 3 (18ME32) principal stresses under plane stress condition, strain energy in bars, beams and stresses in thick and thin cylinders.

2018 Scheme

				3. Draw shear force and bending moment diagram
				for beams under different loads and analyze
				beams with symmetrical and unsymmetrical
				sections for stresses.
				4. Design, shafts under pure torsion and
				understand the principle of theories of failure.
				5. Design columns under buckling with different
				support conditions and determine strain energy
				under different loading conditions.
				1. Explain fundamentals of thermodynamics and
				evaluate energy interactions across the boundary
			Basic Thermodynamics (18ME33)	of thermodynamic systems. understand the
				concept of temperature, Scales
				2. Study the basic laws of thermodynamics
		3		including conservation of mass, conservation of
				energy or first law, Understand various forms of
				energy including heat transfer, work and Evaluate
				the feasibility of cyclic and non-cyclic processes
				using 2nd law of thermodynamics.
3				3. Apply the knowledge of entropy, reversibility
				and irreversibility to solve numerical problems
				and apply 1st law of thermodynamics to closed
				and open systems and determine quantity of
				energy transfers and change in properties.
				4. Interpret the behavior of pure substances and its
				application in practical problems
				5. Recognize differences between ideal and real
				gases and evaluate thermodynamic properties of
				ideal and real gas mixtures using various
				relations.
				1. Understand types of structures, imperfections
			Material Science	in metals, diffusion mechanism, mechanical
4		3	(18ME34)	behavior, fracture, fatigue and creep
				phenomenon.
				1

				2. Understand and interpret phase transformation
				during solidification, phase diagrams, iron carbon
				equilibrium diagrams.
				3. Understand concepts of heat treatment process
				and their influence on material properties.
				4. Understand the structure, properties and
				applications of ceramics, plastics, composites and
				other advanced materials with emphasis to ethical
				and sustainability aspects of materials.
				1. to have constitutional knowledge and legal
				literacy
			Constitution of India,	2. to understand Engineering and Professional
5		3	Professional Ethics and Cyber Law (18CPC30)	ethics and responsibilities of Engineers
			Cyber Law (16C1 C59)	3. to understand the cybercrimes and cyber laws
				for cyber safety measures
				1. Able to Explain the construction &
				specification of various machine tools
				2. Able to Discuss different cutting tool
				materials, tool nomenclature & surface finish
				3. Apply mechanics of machining process to
				evaluate machining time
6		3	Metal cutting and	4. Analyze tool wear mechanisms and equations
Ū			forming (18ME35A)	to enhance tool life and minimize machining cost.
				5. Understand the concepts of different metal
				forming processes
				6. Apply the concepts of design of sheet metal
				dies to design different dies for simple sheet metal
				components
				1. Describe the casting process and prepare
				different types of cast products. Acquire
				knowledge on Pattern, Core, Gating, Riser system
7		3	Metal Casting and	and to use Jolt, Squeeze, Sand Slinger moulding
/		5	Welding (18ME35B)	machines
				2. Compare the Gas fired pit. Resistance
				Coreless. Electrical and Cupola Metal
			esteross, Licenton und Cupola Metal	

				Furnaces. Compare the Gravity, Pressure die,
				Centrifugal, Squeeze, slush and Continuous Metal
				mold castings
				3. Understand the Solidification process and
				Casting of Non-Ferrous Metals.
				4. Describe the Metal Arc, TIG, MIG, Submerged
				and Atomic Hydrogen Welding processes etc.
				used in manufacturing.
				5. Describe methods for the quality assurance of
				components made of casting and joining process
				1. Sketch the machine components in
				orthographic and pictorial views.
		2	Computer Aided	2. Apply Limits, Tolerances to choose the
8		3	Machine Drawing (18ME36A)	appropriate Fits in machine component assembly.
			Mechanical Measurements and	3. Communicate the complete technical details of
				the machine components.
				1. Understand the metrology, its advancements
				and measuring instruments. Students acquire the
				knowledge of standards such as line, end and
				wavelength standards.
				2. Understand and acquire the knowledge of
				calibration, precision, accuracy etc., measurement
				of angles, screw threads and gear.
9		3		3. Understand and acquire the knowledge of
			Metrology (18ME36B)	generalized description of measurement system.
				4. Understand the primary and secondary
				transducers. Students analyze the terminating
				devices such as Cathode-Ray-Oscilograph
				(CRO), X-Y Recorder etc.,
				5. Understand the measurement of Force, Torque,
				Pressure, Temperature and strain
				1. Demonstrate good understanding of concepts
10		2	Material Testing lab	and their applications in the lab.
10		3	(18MEL37A)	2. Use testing machines to determine mechanical
				properties of engineering materials and analyze

				the failure of the specimen under various loading
				condition.
				3. Work in teams to perform experimental tasks.
				4. Understand ethical issues associated with
				engineering experiments and professional
				practice.
				5. Write formal technical report & convey
				engineering message efficiently.
				1. Develop necessary skills to use different
				measuring instruments used in mechanical
				measurements and calibrate them.
			Mechanical	2. Analyse and interpret the measurement results
11		3	Measurements and	to draw valid conclusions.
			Metrology lab (18MEL37B)	3. Clarify the theoretical concepts with
				experimental outcomes.
				4. Report the experimental details and
				observations systematically.
				1. Necessary calculations require for various
		3	Workshop and Machine Shop Practice (Consists of Fitting, and Machining) (18MEL38A)	operations in workshop and machine shop.
				2. Carryout the various operations using lathe,
12				shaper and milling machines.
				3. To produce machine components required for
				various applications with accuracy.
				1. Demonstrate the various skills of sand
				preparation and sand testing
				2. Demonstrate the various skills of mould
			Foundry Forging and	preparation using different types of patterns
13		3	Welding lab	3. Demonstrate the welding skills and make
			(18MEL38B)	different welded joints
				4. Demonstrate the various skills of handling of
				Forging equipment's and volume calculations for
				preparing the forging models
<u> </u>				1. Solve rank of matrix by elementary row
14		4	Additional Mathematics	operations - Echelon form. Consistency of system
			- 2 (18MATDIP41)	of linear equations - Gauss elimination method

				2. Demonstrate various physical models through
				2 nd and higher order linear differential equation
				and solve such equations.
				3. Construct a variety of Partial differential
				equation and solution by direct integration,
				method of separation of variables.
				4. Apply the knowledge of numerical methods,
				infinite series and series solution of ordinary
				differential equation to explain various physical
				and engineering problems.
	-			1. Apply the thermodynamic knowledge to
				analyze the performance of gas power cycles.
				2. Understand the concept of different types of
				fuels and combustion in IC engine and apply that
		4		knowledge in analyzing the performance of IC
				engines.
				3. Apply the thermodynamic concept to analyze
			Applied	vapour power cycle to improve their performance.
15			Thermodynamics (18ME42)	4. Understand the concepts and applications of
				Refrigeration and Air conditioning and to apply
				that knowledge in analyzing the performance of
				Refrigerators and Air conditioning systems.
				5. Understand the concepts and applications
				of steam nozzle and air compressors and to apply
				that knowledge in analyzing the performance of
				steam nozzle and air compressors.
				1. Identify and calculate the key fluid properties
				used in the analysis of fluid behavior
				2. Apply the knowledge of fluid statics,
			Fluid Mechanics	kinematics while addressing problems of
16		4	(18ME43)	Mechanical Engineering
				3. Explain the guiding Principles of Fluid
				Dynamics and its application to measure flow

				4. Explain the concept of boundary layer, Laminar
				& turbulent flows in fluid flow and techniques
				of dimensional analysis to form dimensionless
				numbers in terms of input output variables.
				5. Illustrate and explain the basic concept of
				compressible flow and CFD
				1. Identify mechanisms in real life applications
				and describe the working principle of various
				mechanisms.
				2. Analyze velocity and acceleration of
			Kinematics of	mechanisms by graphical and analytical methods.
17		4	Machines (18ME44)	3. Analyze the working of Spur Gears and
				determine the velocity ratio of different gear
				trains.
				4. Draw the profile of disc cams for different types
				of followers for specified type of motion.
				1. Understand the Construction and specification
				of various machine tools, different cutting tool
				materials, tool nomenclature and surface
				machines
				2. Apply mechanics of machining process to
				evaluate machining time
18		4	Metal cutting and	3. Analyze tool wear mechanisms and equations
			forming (18ME43A)	to enhance tool life and minimize machining cost
				4. Understand the concepts of different metal
				forming processes.
				5. Apply the concepts of design of sheet metal
				dies to design different dies for simple sheet metal
				components
				1. Understand the casting processes, preparation
				of Green, Core, dry sand molds and Sweep, Shell,
19		4	Metal Casting and	Investment and plaster molds. Explain the
			welding (18ME43B)	Pattern, Core, Gating, Riser system and Jolt,
				Squeeze, Sand Slinger Molding Machines.
	1			

				Compare the Gas fired pit, Resistance, Coreless,
				Electrical and Cupola Metal Furnaces
			2. Understand and Compare the Gravity, Pressure	
			die, Centrifugal, Squeeze, slush and Continuous	
				Metal mold castings.
				3. Understand the Solidification process and
				Casting of Non-Ferrous Metals
				4. Understand the Metal Arc, TIG, MIG,
				Submerged and Atomic Hydrogen Welding
				processes used in manufacturing. Understand the
				Resistance spot, Seam, Butt , Projection, Friction,
				Explosive, Thermit, Laser and Electron Beam
				Special type of welding process used in
				manufacturing.
		5. Understand the Metallurgical aspects in		
				Welding and inspection methods for the quality
				assurance of components made of casting and
				joining process.
				1. Understand the use and applications of CAD
			software (Solid Edge) in Machine drawing,	
				modeling and assembling.
				2. Apply the knowledge of orthographic
			projections in the reading Machine drawings.	
• •			Computer Aided	3. Execute the steps involved in orthographic
20		4	Machine Drawing (18ME46A)	projections to draw 2D views of machine
				components with suitable scale.
				4. Create the 3D models of machine drawings
				using CAD software.
				5. Report systematically the 2D views and 3D
				models of machine drawings.
				1. C206.1 Understand the objectives of metrology
			Machanical	and learn about methods of measurement,
21		4	Measurements and	measuring instruments, standards of
			Metrology (18ME46B)	measurement, linear and angular measurements,
				errors in measurement and calibration.

				2. C206.2 Understand the concept of limits, fits
				and tolerances and apply it to design of gauges.
				3. C206.3 Understand the generalized
				measurement system and able to recognize
				sensor, transducer, modifying and terminating
				devices and their functions in an instrument.
				4. C206.4 Understand the different approaches to
				measure screw thread, gear, force, torque,
				pressure, strain and temperature.
				5. C206.5 Understand the advancements in
				metrology and measurements.
				1. Demonstrate good understanding of concepts
				and their applications in the lab.
			Material Testing lab (18MEL47A)	2. Use testing machines to determine mechanical
		4		properties of engineering materials and analyze
				the failure of the specimen under various loading
				condition.
22				3. Work in teams to perform experimental tasks.
				4. Understand ethical issues associated with
				engineering experiments and professional
				practice.
				5. Write formal technical report & convey
				engineering message efficiently.
				1. Determine the calibration of pressure gauge,
				thermo couple, LVDT, load cell, and finding out
				the modulous of elasticity of a mild steel
				specimen using strain gauges.
				2. Determine the measurement using Optical
			Mechanical Measurements and	projector/Tool maker microscope, sine bar/ sine
23		4	Metrology lab	centre/ bevel protractor, alignment using Auto
			(18MEL47B)	colimeter / roller set, measurement of cutting tool
				forcesusing a) Lathe too Dynamometer b)Drill
				tool Dynamometer. Screw thread parameter,
				Surface roughness, gear tooth profile, Optical
				flatsand also to calibrate micrometer.
1	1			

				3. Students can be able to answer the viva
				questions based on both theory and practical work
				1. Perform turning, facing, knurling, thread
				cutting, tapering, eccentric turning and allied
			Workshop and Machine	operations.
			Shop Practice (Consists	2. Perform key ways/slots, grooves etc., and using
24		4	of Fitting, and Machining)	shaper.
			(18MEL48A)	3. Perform gear teeth cutting using milling
				machine. Cut and file various shapes on M S flat
				using filling operations.
				1. Demonstrate the various skills of sand
				preparation and sand testing
				2. Demonstrate the various skills of mould
			Foundry Forging and	preparation using different types of patterns
25		4	Welding lab (18MEL48B)	3. Demonstrate the welding skills and make
				different welded joints
				4. Demonstrate the various skills of handling of
				Forging equipment and volume calculations for
				preparing the forging models
				1. Understand the fundamentals of modern
				management and engineering economics and to
				take decisions to solve industrial problems.
				2. Employ the functions of management in align
				with the objectives of the organization and
				demonstrate leadership qualities, social
		_	Management and	responsibilities and interpret ethical
26		5	Economics (18ME51)	characteristics in an industrial environment.
				3. Formulate and solve cash flow models to take
				economic decisions.
				4. Interpret the components of cost and taxation
				concepts in order to control the cost and compute
				depreciation in order to accumulate funds for
				replacement of assets.
	1		Design of Machine	1. Understand the basic design procedure, design
27		5	Elements I (18ME52)	requirements, design considerations, Material

			properties, standard organizations for system
			designations and concept of stress concentration.
			2. Design the machine components for static,
			impact and fatigue loads
			3. Design the shafts, keys, couplings and joints
			based on strength & rigidity criteria
			4. Investigate the strength and efficiency of
			riveted & welded joints
			5. Design the threaded fasteners and power screws
			based on efficiency under static & eccentric loads
			1. Apply the knowledge of engineering mechanics
			to analyze the static and dynamic forces acting on
		Dynamics of Machines	four-bar, slider-crank and shaper mechanisms.
			2. Evaluate the balancing forces for the static and
			dynamic equilibrium of rotating and reciprocating
			masses.
			3. Analyze the influence of governors and
28	5		gyroscopes on the stability of vehicles
28	5	(10 ME 52)	gyroscopes on the stability of vehicles.
28	5	(18ME53)	4. Determine the natural frequencies of simple
28	5	(18ME53)	4. Determine the natural frequencies of simple mechanical systems under undamped and damped
28	5	(18ME53)	4. Determine the natural frequencies of simple mechanical systems under undamped and damped free vibration.
28	5	(18ME53)	 4. Determine the natural frequencies of simple mechanical systems under undamped and damped free vibration. 5. Examine the vibration characteristics of
28	5	(18ME53)	 4. Determine the natural frequencies of simple mechanical systems under undamped and damped free vibration. 5. Examine the vibration characteristics of mechanical system under forced vibration and
28	5	(18ME53)	 4. Determine the natural frequencies of simple mechanical systems under undamped and damped free vibration. 5. Examine the vibration characteristics of mechanical system under forced vibration and transverse vibration of shaft subjected to different
28	5	(18ME53)	 4. Determine the natural frequencies of simple mechanical systems under undamped and damped free vibration. 5. Examine the vibration characteristics of mechanical system under forced vibration and transverse vibration of shaft subjected to different loads.
28	5	(18ME53)	 4. Determine the natural frequencies of simple mechanical systems under undamped and damped free vibration. 5. Examine the vibration characteristics of mechanical system under forced vibration and transverse vibration of shaft subjected to different loads. 1. Categorize turbo machines & implement them
28	5	(18ME53)	 4. Determine the natural frequencies of simple mechanical systems under undamped and damped free vibration. 5. Examine the vibration characteristics of mechanical system under forced vibration and transverse vibration of shaft subjected to different loads. 1. Categorize turbo machines & implement them based upon the functional requirement of an
28	5	(18ME53)	 4. Determine the natural frequencies of simple mechanical systems under undamped and damped free vibration. 5. Examine the vibration characteristics of mechanical system under forced vibration and transverse vibration of shaft subjected to different loads. 1. Categorize turbo machines & implement them based upon the functional requirement of an objective.
28	5	(18ME53)	 4. Determine the natural frequencies of simple mechanical systems under undamped and damped free vibration. 5. Examine the vibration characteristics of mechanical system under forced vibration and transverse vibration of shaft subjected to different loads. 1. Categorize turbo machines & implement them based upon the functional requirement of an objective. 2. Define the fundamental knowledge of turbo
28	5	(18ME53) Turbo Machines (18ME54)	 4. Determine the natural frequencies of simple mechanical systems under undamped and damped free vibration. 5. Examine the vibration characteristics of mechanical system under forced vibration and transverse vibration of shaft subjected to different loads. 1. Categorize turbo machines & implement them based upon the functional requirement of an objective. 2. Define the fundamental knowledge of turbo machines and implement it in solving problems
28	5	(18ME53) Turbo Machines (18ME54)	 4. Determine the natural frequencies of simple mechanical systems under undamped and damped free vibration. 5. Examine the vibration characteristics of mechanical system under forced vibration and transverse vibration of shaft subjected to different loads. 1. Categorize turbo machines & implement them based upon the functional requirement of an objective. 2. Define the fundamental knowledge of turbo machines and implement it in solving problems related to turbo machines.
28	5	(18ME53) Turbo Machines (18ME54)	 4. Determine the natural frequencies of simple mechanical systems under undamped and damped free vibration. 5. Examine the vibration characteristics of mechanical system under forced vibration and transverse vibration of shaft subjected to different loads. 1. Categorize turbo machines & implement them based upon the functional requirement of an objective. 2. Define the fundamental knowledge of turbo machines and implement it in solving problems related to turbo machines. 3. Identify and analyze the problems related to

				4. Demonstrate the ability to determine
				parameters of hydraulic turbine and conduct its
				performance analysis.
				5. Analyze the performance of centrifugal pumps
				and axial flow air compressor
				1. Demonstrate the working Principle of a
				Hydraulic system and its components.
				2. Select and analyse Hydraulic pumps, actuators,
				its accessories to meet functional requirement of
				a hydraulic system.
30		5	Fluid Power Engineering (18ME55)	3. Design and analyse Hydraulic Circuits,
			gg(1011200)	4. Apply the knowledge in design, development
				and maintenance of Pneumatic systems
				5. Implement modern technique like electro
				pneumatics control systems to enhance the
				performance of Pneumatic systems.
				1. Understand the operations management and its
		5		allied functional areas
				2. Apply forecasting, planning, and scheduling
				techniques to improve organizational efficiency
			Operations	and effectiveness
31			Management (18ME56)	3. Analyze location and capacity decisions to
				achieve profitability and meet future demands for
				products and services
				4. Determine the materials requirement and
				smooth flow of goods and services
				1. Perform experiments to determine the
				coefficient of discharge of flow measuring
			Fluid	devices, Minor and Major losses in flow through
32		5	Mechanics/Machines	pipe
			lab (18MEL57)	2. Conduct experiments on hydraulic turbines and
				pumps to draw its Main and
				Operating characteristics.

33 4 6 Finite Element Methods (18ME61) 1. Apply the knowledge of mathematics and regineering mechanics to formulate and solve the structural, heat transfer and fluid flow problems. 33 34 6 Finite Element Methods (18ME61) 1. Secure heat ransfer and fluid flow problems using finite element approach. 35 6 Design of Machine Elements II (18ME61) 1. Describe the design of mechanical systems involving flat & v-belt drives, chain & rope drives, head springs 36 6 Design of Machine Elements II (18ME61) 1. Describe the design of bevel and systems involving flat & v-belt drives, chain & rope drives, head springs 37 36 6 Design of Machine Elements II (18ME61) 1. Apply the knowledge of mathematics and sugnet for the remedies. 38 39 30 1. Apply the knowledge of mathematics and engineering mechanics to formulate and solve the structural, heat transfer and fluid flow problems. 39 1. Apply the knowledge of mathematics and engineering mechanics to and trust set using finite element approach. 39 1. Element Methods (18ME61) 1. Execute heat transfer and fluid flow problems. 30 2. Analyze the properties from the design of					3. Determine the performance of a
33 6 Finite Element Methods (18ME61) 1. Apply the knowledge of mathematics and engineering mechanics to formulate and solve the structural, heat transfer and fluid flow problems. 1. Apply the knowledge of mathematics and engineering mechanics to formulate and solve the structural, heat transfer and fluid flow problems. 2. Analyze thera transfer and fluid flow problems. 3. Examine beams and shafts using finite element approach. 3. Examine beams and shafts using finite element approach. 3. Examine beams and shafts using finite element approach. 3. Examine beams and shafts using finite element approach. 3. Examine beams and shafts using finite element approach. 3. Evaluate axi-symmetric and structural engineering problems under dynamic conditions using finite element approach. 3. Evaluate axi-symmetric and structural engineering problems under dynamic conditions using finite element approach. 3. Canduct be activity of the structural engineering problems using finite element approach. 3. Evaluate axi-symmetric and structural engineering problems using finite element approach. 3. Evaluate axi-symmetric and structural engineering problems using finite element approach. 3. Evaluate axi-symmetric and structural engineering problems under dynamic conditions using finite element approach. 3. Laward the properties from the design of direver, helical & leaf springs 35 6 Design of Machine Elements II (18ME62) 1. Describe the design the mechanical systems involving flat & v-belt drives, chain & rope drives, helical & leaf springs 35 6 Design of Machine Elements II (18ME62) 1. Describe the design the design of different types of gars such as spur, helical. 3. Analyze the properties from the design of different types of gars such as spur, helical. 3. Analyze the properties from the design of bevel					Reciprocating Air Compressor & Centrifugal Air
33 6 Finite Element Methods (18ME61) 6 Finite Element Methods (18ME61) 1. Apply the knowledge of mathematics and regimeering mechanics to formulate and solve the structural, heat transfer and fluid flow problems using finite element approach. 35 6 Design of Machine Elements II (18ME62) 1. Describe the design of mathematics and engineering problems under dynamic conditions 35 6 Design of Machine Elements II (18ME62) 1. Describe the design the design of different types of gears such as spur, helical.					blower by conducting a performance test
33 6 Perign of Machine Elements II (18ME62) 9 9 9 1. Conduct experimental setup and methodology to conduct and analyse performance of fluid machines, flow measuring devices, head losses & impact analysis on vanes 33 5 Fenergy Conversion Lab (18MEL58) 1. Conduct experiments to determine the properties of fuels and oils. 3. Conduct basic performance parameters of IC engine. 2. Conduct basic performance parameters of IC engine. 4. Assess exhaust emission, factors affecting them and report the remedies. 3. Analyze bars and fluid flow problems. 2. Analyze bars and trusses using finite element approach. 3. Evaluate axi-symmetric and structural engineering problems under dynamic conditions using finite element approach. 3. Evaluate axi-symmetric and structural engineering problems under dynamic conditions using finite element approach. 3. Describe the design the mechanical systems involving flat & v-bett drives, chain & rope drives, helical & leaf springs 3. Analyze the properties from the design of different types of gears such as spur, helical. 3. Analyze the properties from the design of bevel and worm gears for power transmission.					4. Exhibit his competency in designing
33 6 Finite Element Methods (18ME51) 1. Apply the knowledge of mathematics and engineering mechanics to formulate and solve the structural, heat transfer and fluid flow problems using finite element approach. 35 6 Design of Machine Elements II (18ME52) 1. Exercise the design of machine approach. 35 6 Design of Machine Elements II (18ME61) 2. Analyze the properties from the design of different types of gears such as spur, helical.					experimental setup and methodology to conduct
33 6 Image: Conversion Lability (18MEL58) 1. Conduct experiments to determine the properties of fuels and oils. 33 5 Energy Conversion Lability (18MEL58) 1. Conduct experiments on engines and draw characteristics. 33 6 Energy Conversion Lability (18MEL58) 1. Conduct experiments on engines and draw characteristics. 34 5 Energy Conversion Lability (18MEL58) 1. Conduct basic performance parameters of IC engine. 34 6 Finite Element Lability (18ME61) 1. Apply the knowledge of mathematics and engineering mechanics to formulate and solve the structural, heat transfer and fluid flow problems. 34 6 Finite Element Methods (18ME61) 1. Apply the knowledge of mathematics and engineering mechanics to formulate and solve the structural, heat transfer and fluid flow problems. 35 6 Finite Element Methods (18ME61) 3. Examine beams and shafts using finite element approach. 35 6 Design of Machine Elements II (18ME62) 3. Examine beams and shafts using finite element approach. 35 6 Design of Machine Elements II (18ME62) 1. Describe the design the mechanical systems involving flat & v-belt drives, chain & rope drives, helical & leaf springs 36 7 Design of Machine Elements II (18ME62) 2. Analyze the properties from the design of bevel and worm gears for power tra					and analyse performance of fluid machines, flow
33 6 Image: Ima					measuring devices, head losses & impact analysis
33 5 Energy Conversion Labit (18MEL58) 1. Conduct experiments to determine the properties of fuels and oils. 33 5 Energy Conversion Labit (18MEL58) 2. Conduct experiments on engines and draw characteristics. 34 5 Energy Conversion Labit (18MEL58) 3. Conduct basic performance parameters of IC engine. 4. Assess exhaust emission, factors affecting them and report the remedies. 1. Apply the knowledge of mathematics and engineering mechanics to formulate and solve the structural, heat transfer and fluid flow problems. 34 6 Finite Element Methods (18ME61) 3. Examine beams and shafts using finite element approach. 35 6 Design of Machine Elements II (18ME62) 1. Describe the design the mechanical systems involving flat & v-belt drives, chain & rope drives, helical & leaf springs 35 6 Design of Machine Elements II (18ME62) 2. Analyze the properties from the design of bevel and worm gears for power transmission.					on vanes
33 5 Energy Conversion Labio (18MEL58) properties of fuels and oils. 2. Conduct experiments on engines and draw characteristics. 3. Conduct basic performance parameters of IC engine. 4. Assess exhaust emission, factors affecting them and report the remedies. 3. Conduct basic performance parameters of IC engine. 4. Assess exhaust emission, factors affecting them and report the remedies. 3. Conduct basic performance parameters of IC engine. 4. Assess exhaust emission, factors affecting them and report the remedies. 3. Conduct basic performance parameters of IC engine. 4. Assess exhaust emission, factors affecting them and report the remedies. 3. Conduct basic performance parameters of IC engine. 4. Assess exhaust emission, factors affecting them and report the remedies. 3. Conduct basic performance parameters of IC engine. 5. Assess exhaust emission finite element approach. 3. Examine beams and shafts using finite element approach. 5. Evaluate axi-symmetric and structural engineering problems under dynamic conditions using finite element approach. 3. Solution finite element approach. 1. Describe the design the mechanical systems involving flat & v-belt drives, chain & rope drives, helical & leaf springs 3. Analyze the properties from the design of drives, helical. 3. Analyze the properties from the design of bevel and worm gears for power transmission.					1. Conduct experiments to determine the
33 5 Energy Conversion Lab (18MEL58) 2. Conduct experiments on engines and draw characteristics. 34 5 Energy Conversion Lab (18MEL58) 3. Conduct basic performance parameters of IC engine. 4. Assess exhaust emission, factors affecting them and report the remedies. 4. Assess exhaust emission, factors affecting them and report the remedies. 34 6 Finite Element Methods (18ME61) 1. Apply the knowledge of mathematics and engineering mechanics to formulate and solve the structural, heat transfer and fluid flow problems. 2. Analyze bars and trusses using finite element approach. 3. Examine beams and shafts using finite element approach. 4. Execute heat transfer and fluid flow problems using finite element approach. 5. Evaluate axi-symmetric and structural engineering problems under dynamic conditions using finite element approach. 35 6 Design of Machine Elements II (18ME62) 1. Describe the design the mechanical systems involving flat & v-belt drives, chain & rope drives, helical & leaf springs 35 6 Design of Machine Elements II (18ME62) 2. Analyze the properties from the design of different types of gears such as spur, helical.					properties of fuels and oils.
33 5 Energy Conversion Lab (18MEL58) characteristics. 34 5 Energy Conversion Lab (18MEL58) Conduct basic performance parameters of IC engine. 4. Assess exhaust emission, factors affecting them and report the remedies. I. Apply the knowledge of mathematics and engineering mechanics to formulate and solve the structural, heat transfer and fluid flow problems. 34 6 Finite Element Methods (18ME61) 3. Examine beams and shafts using finite element approach. 35 6 Design of Machine Elements II (18ME62) 1. Describe the design the mechanical systems involving flat & v-belt drives, chain & rope drives, helical & leaf springs 35 6 Design of Machine Elements II (18ME62) 2. Analyze the properties from the design of bifferent types of gears such as spur, helical. 3. Analyze the properties from the design of bevel and worm gears for power transmission.					2. Conduct experiments on engines and draw
33 5 Energy Conversion Lab 3. Conduct basic performance parameters of IC engine. 4. Assess exhaust emission, factors affecting them and report the remedies. 4. Assess exhaust emission, factors affecting them and report the remedies. 34 6 Finite Element Methods (18ME61) 1. Apply the knowledge of mathematics and engineering mechanics to formulate and solve the structural, heat transfer and fluid flow problems. 34 6 Finite Element Methods (18ME61) 3. Examine beams and shafts using finite element approach. 3. Examine beams and shafts using finite element approach. 3. Examine beams and shafts using finite element approach. 35 6 Design of Machine Elements II (18ME62) 1. Describe the design the mechanical systems involving flat & v-belt drives, chain & rope drives, helical & leaf springs 35 6 Design of Machine Elements II (18ME62) 2. Analyze the properties from the design of bevel and worm gears for power transmission.				Energy Conversion Lab	characteristics.
34 6 End (18) engine. 34 6 Finite Element Methods (18) 1. Apply the knowledge of mathematics and engineering mechanics to formulate and solve the structural, heat transfer and fluid flow problems. 34 7. Analyze bars and trusses using finite element approach. 3. Examine beams and shafts using finite element approach. 4. Execute heat transfer and fluid flow problems using finite element approach. 5. Evaluate axi-symmetric and structural engineering problems under dynamic conditions using finite element approach. 35 6 6 Design of Machine Elements II (18) 6 Design of Machine Elements II (18) 2. Analyze the properties from the design of different types of gears such as spur, helical. 3. Analyze the properties from the design of different types of gears such as spur, helical. 3. Analyze the properties from the design of bevel and worm gears for power transmission.	33		5	(18MEL58)	3. Conduct basic performance parameters of IC
34 6 4. Assess exhaust emission, factors affecting them and report the remedies. 34 1. Apply the knowledge of mathematics and engineering mechanics to formulate and solve the structural, heat transfer and fluid flow problems. 34 6 Finite Element Methods (18ME61) 35 6 Finite Element Methods (18ME61) 35 6 Design of Machine Element II (18ME62) 35 6 Design of Machine Element II (18ME62) 36 7 1. Describe the design the mechanical systems involving flat & v-belt drives, chain & rope drives, helical & leaf springs 35 35 6					engine.
34 initial initial and report the remedies. 34 initial initial <td></td> <td></td> <td></td> <td rowspan="2"></td> <td>4. Assess exhaust emission, factors affecting them</td>					4. Assess exhaust emission, factors affecting them
34 6 Finite Element Methods (18ME61) 1. Apply the knowledge of mathematics and engineering mechanics to formulate and solve the structural, heat transfer and fluid flow problems. 34 6 Finite Element Methods (18ME61) 2. Analyze bars and trusses using finite element approach. 3. Examine beams and shafts using finite element approach. 3. Examine beams and shafts using finite element approach. 4. Execute heat transfer and fluid flow problems using finite element approach. 5. Evaluate axi-symmetric and structural engineering problems under dynamic conditions using finite element approach. 35 6 Design of Machine Elements II (18ME62) 1. Describe the design the mechanical systems involving flat & v-belt drives, chain & rope drives, helical & leaf springs 35 6 Design of Machine Elements II (18ME62) 2. Analyze the properties from the design of different types of gears such as spur, helical. 3. Analyze the properties from the design of different types of gears such as spur, helical. 3. Analyze the properties from the design of bevel and worm gears for power transmission.					and report the remedies.
34 6 Finite Element Methods (18ME61) engineering mechanics to formulate and solve the structural, heat transfer and fluid flow problems. 34 6 Finite Element Methods (18ME61) 3. Examine beams and shafts using finite element approach. 3. Examine beams and shafts using finite element approach. 4. Execute heat transfer and fluid flow problems using finite element approach. 35 6 Design of Machine Elements II (18ME62) 1. Describe the design the mechanical systems involving flat & v-belt drives, chain & rope drives, helical & leaf springs 35 6 Design of Machine Elements II (18ME62) 2. Analyze the properties from the design of different types of gears such as spur, helical. 3. Analyze the properties from the design of bevel and worm gears for power transmission. 3. Analyze the properties from the design of bevel					1. Apply the knowledge of mathematics and
34 6 Finite Element Methods (18ME61) 2. Analyze bars and trusses using finite element approach. 3. Examine beams and shafts using finite element approach. 3. Examine beams and shafts using finite element approach. 4. Execute heat transfer and fluid flow problems using finite element approach. 4. Execute heat transfer and fluid flow problems using finite element approach. 5. Evaluate axi-symmetric and structural engineering problems under dynamic conditions using finite element approach. 35 6 6 Design of Machine Elements II (18ME62) 2. Analyze the properties from the design of different types of gears such as spur, helical. 3. Analyze the properties from the design of bevel and worm gears for power transmission.					engineering mechanics to formulate and solve the
34 6 Finite Element Methods (18ME61) 2. Analyze bars and trusses using finite element approach. 34. 6 Finite Element Methods (18ME61) 3. Examine beams and shafts using finite element approach. 4. Execute heat transfer and fluid flow problems using finite element approach. 5. Evaluate axi-symmetric and structural engineering problems under dynamic conditions using finite element approach. 35 6 Design of Machine Elements II (18ME62) 1. Describe the design the mechanical systems involving flat & v-belt drives, chain & rope drives, helical & leaf springs 35 3. Analyze the properties from the design of different types of gears such as spur, helical.					structural, heat transfer and fluid flow problems.
34 6 Finite Element Methods (18ME61) approach. 3. Examine beams and shafts using finite element approach. 4. Execute heat transfer and fluid flow problems using finite element approach. 5. Evaluate axi-symmetric and structural engineering problems under dynamic conditions using finite element approach. 35 6 6 Design of Machine Elements II (18ME62) 2. Analyze the properties from the design of different types of gears such as spur, helical. 3. Analyze the properties from the design of bevel and worm gears for power transmission.					2. Analyze bars and trusses using finite element
34 6 Finite Element Methods (18ME61) 3. Examine beams and shafts using finite element approach. 4. Execute heat transfer and fluid flow problems using finite element approach. 4. Execute heat transfer and fluid flow problems using finite element approach. 5. Evaluate axi-symmetric and structural engineering problems under dynamic conditions using finite element approach. 35 6 6 Design of Machine Elements II (18ME62) 7 1. Describe the design the mechanical systems involving flat & v-belt drives, chain & rope drives, helical & leaf springs 2. Analyze the properties from the design of different types of gears such as spur, helical. 3. Analyze the properties from the design of bevel and worm gears for power transmission.			6		approach.
34 6 Finite Element Methods (18ME61) approach. 4. Execute heat transfer and fluid flow problems using finite element approach. 5. Evaluate axi-symmetric and structural engineering problems under dynamic conditions using finite element approach. 35 6 Design of Machine Elements II (18ME62) 1. Describe the design the mechanical systems involving flat & v-belt drives, chain & rope drives, helical & leaf springs 35 6 Design of Machine Elements II (18ME62) 2. Analyze the properties from the design of different types of gears such as spur, helical. 3. Analyze the properties from the design of bevel and worm gears for power transmission. 3. Analyze the properties from the design of bevel				Finite Element Methods	3. Examine beams and shafts using finite element
35 6 Design of Machine Elements II (18ME62) 6 Design of Machine Elements II (18ME62) 6 Design of Machine Elements II (18ME62) 35 6	34			(18ME61)	approach.
35 6 Design of Machine Elements II (18ME62) 1. Describe the design the mechanical systems involving flat & v-belt drives, chain & rope drives, helical & leaf springs 35 6 Design of Machine Elements II (18ME62) 2. Analyze the properties from the design of bevel and worm gears for power transmission.					4. Execute heat transfer and fluid flow problems
35 6 Design of Machine Elements II (18ME62) 5. Evaluate axi-symmetric and structural engineering problems under dynamic conditions using finite element approach. 35 1. Describe the design the mechanical systems involving flat & v-belt drives, chain & rope drives, helical & leaf springs 2. Analyze the properties from the design of different types of gears such as spur, helical. 3. Analyze the properties from the design of bevel and worm gears for power transmission.					using finite element approach.
35 6 Design of Machine Elements II (18ME62) 1. Describe the design the mechanical systems involving flat & v-belt drives, chain & rope drives, helical & leaf springs 35 35 6 Design of Machine Elements II (18ME62) 2. Analyze the properties from the design of different types of gears such as spur, helical. 3. Analyze the properties from the design of bevel and worm gears for power transmission.					5. Evaluate axi-symmetric and structural
356Design of Machine Elements II (18ME62)1. Describe the design the mechanical systems involving flat & v-belt drives, chain & rope drives, helical & leaf springs356Design of Machine Elements II (18ME62)2. Analyze the properties from the design of different types of gears such as spur, helical. 3. Analyze the properties from the design of bevel and worm gears for power transmission.					engineering problems under dynamic conditions
356Design of Machine Elements II (18ME62)1. Describe the design the mechanical systems involving flat & v-belt drives, chain & rope drives, helical & leaf springs3500Design of Machine Elements II (18ME62)2. Analyze the properties from the design of different types of gears such as spur, helical.3. Analyze the properties from the design of bevel and worm gears for power transmission.3. Analyze the properties from the design of bevel and worm gears for power transmission.					using finite element approach.
356Design of Machine Elements II (18ME62)involving flat & v-belt drives, chain & rope drives, helical & leaf springs352. Analyze the properties from the design of different types of gears such as spur, helical.3. Analyze the properties from the design of bevel and worm gears for power transmission.					1. Describe the design the mechanical systems
356Design of Machine Elements II (18ME62)drives, helical & leaf springs2. Analyze the properties from the design of different types of gears such as spur, helical.3. Analyze the properties from the design of bevel and worm gears for power transmission.					involving flat & v-belt drives, chain & rope
356Design of Machine Elements II (18ME62)2. Analyze the properties from the design of different types of gears such as spur, helical.3. Analyze the properties from the design of bevel and worm gears for power transmission.					drives, helical & leaf springs
Elements II (18ME62) different types of gears such as spur, helical. 3. Analyze the properties from the design of bevel and worm gears for power transmission.	35		6	Design of Machine	2. Analyze the properties from the design of
3. Analyze the properties from the design of bevel and worm gears for power transmission.				Elements II (18ME62)	different types of gears such as spur, helical.
and worm gears for power transmission.					3. Analyze the properties from the design of bevel
					and worm gears for power transmission.

				4. Evaluate the Normal and tangential forces,
				effort, maximum torque, heat generation in
				different types of brakes and axial force and
				torque transmitted in different types of clutches
				5. Design the hydrodynamic bearings and select
				anti friction bearings from manufacturers
				catalogue for various applications
				1. Explain the basic modes of heat transfer and
				solve steady and unsteady state heat conduction
				problems
				2. Analyze the performance of extended surfaces
				subjected to free and forced convection heat
26		<i>.</i>	Heat Transfer	transfer
36		6	(18ME63)	3. Analyze heat transfer rate in forced and free
				convection
				4. Solve the simple heat transfer problems
				pertaining to radiation
				5. Design and analyze the heat exchangers and
				explain the concept of boiling and condensation
		-		1. : Understand the compare traditional and non-
				traditional machining process and recognize the
				need for Non- traditional machining process
				2. Understand the constructional features,
				performance parameters, process characteristics,
				applications, advantages and limitations of USM,
				AJM and WJM
			Non-Traditional	3. Identify the need of Chemical and electro-
37		6	Machining (18ME641)	chemical machining process along with the
				constructional features, process parameters,
				process characteristics, applications, advantages
				and limitations.
				4. Understand the constructional feature of the
				equipment, process parameters, process
				characteristics, applications, advantages and
				limitations EDM & PAM

				5. Understand the LBM equipment, LBM
				parameters, and characteristics. EBM equipment
				and mechanism of metal removal, applications,
				advantages and limitations LBM & EBM
	-			1. Apply the knowledge of materials and its
				compatibility in the development of composite
				materials.
				2. Study the potential characteristics of polymeric
				matrix and metal matrix composites.
			Composite Materials	3. Examine the viability of using ceramic matrix
38		6	Technology (18ME645)	and carbon matrix composites in relevant
				applications.
				4. Determine the characteristics of composites
				materials under different loading conditions.
				5. Develop the composite materials as per micro-
				mechanics and macro-mechanics approaches.
				1. Understand the concept of entrepreneur and
			entrepreneurship and relevant roles	
			Entrepreneurship	2. Learn creativity and entrepreneurial plan
				including project feasibility and project appraisal
•				3. Understand corporate entrepreneurship and
39	O	Development (18ME646)	issues related to corporate entrepreneurship	
				4. Understand family and non-family
				entrepreneur and women entrepreneurs in India
				5. Understand international entrepreneurship
				opportunities and case studies on Indian start-ups
				1. Understand the various renewable energy
				sources and their environmental aspects in
				comparison with non-renewable energy sources.
			Non Conventional	2. Understand the concept of solar energy, solar
40		6	Energy Sources	radiation and its measurement and the different
			(18ME651)	applications of solar energy.
				3. Apply the knowledge of solar thermal
				conversion to analyze liquid flat plate collectors

41 6 Supply Chain Management (18ME653) I. Understand the concepts of tidal power, Ocean thermal energy conversion, and Geothermal energy, Biomass and hydrogen energy and their conversion to other useful forms of energy. I. Understand the frame work of Supply Chain Management (18ME653) Supply Chain Management (18ME653) Understand the concepts of Inventory, supply, stock, surplus management Understand the concept of supply chain networking including location of ware-houses Understand the use and applications of FEA supply Chain Management 42 4 Meansement (18ME653) Understand the use and applications of FEA future of IT infrastructure and E-commerce in Supply Chain Management 41 4 Computer Aided Modelling and Analysis Lab (18MEL66) Secure the steps involved in FEA using Ansys software to solve structural and thermal engineering problems. Apply the knowledge of FEA in the selection of suitable elements for modelling and analysing the engineering problems. Secure the steps involved in FEA using Ansys software to solve structural and thermal engineering problems under various boundary conditions. Validate the FEA results by correlating with theoretical solutions. Secure the steps involved in FEA using Ansys software to solve structural and thermal engineering problems under various boundary conditions. Secure the steps involved in FEA using Ansys software to solve structural and thermal engineering problems under various boundary conditions.					4. Understand the concept of wind energy and
41 6 Supply Chain Management (18ME653) 1. Understand the concepts of tidal power, Ocean thermal energy, Biomass and hydrogen energy and their conversion to other useful forms of energy. 41 6 Supply Chain Management (18ME653) 1. Understand the frame work of Supply Chain using strategies, models, techniques and information technology 41 6 Supply Chain Management (18ME653) 3. Understand the concept of Inventory, supply, stock, surplus management (18ME653) 41 6 Supply Chain Management (18ME653) 3. Understand the concept of Inventory, supply, stock, surplus management 41 1. Understand the concept of Inventory, supply, stock, surplus management 1. Understand the concept of supply chain networking including location of ware-houses 5 Understand the concept of current trends future of IT infrastructure and E-commerce in Supply Chain Management 42 6 Computer Aided Modelling and Analysis Lab (18MEL66) 1. Understand the use and applications of FEA software (Ansys) in modelling and analyzing engineering problems. 42 6 Computer Aided Modelling and Analysis Lab (18MEL66) 3. Execute the steps involved in FEA using Ansys software to solve structural and thermal engineering problems. 4. Validate the FEA results by correlating with theoretical solutions. 4. Validate the FEA results by correlating with theoretical solutions. 5. Report systematically the observations made durin					apply that knowledge to analyze the performance
41 6 Supply Chain Management (18ME653) 1. Understand the concepts of tidal power, Ocean thermal energy, Biomass and hydrogen energy and their conversion to other useful forms of energy. 41 6 Supply Chain Management (18ME653) 1. Understand the frame work of Supply Chain Management 3. Understand the concepts of Inventory, supply, stock, surplus management 4. Understand the concept of supply chain networking including location of ware-houses 5. Understand the concept of current trends future of IT infrastructure and E-commerce in Supply Chain Management 42 6 Computer Aided Modelling and Analysis Lab (18MEEL66) 1. Understand the use and applications of FEA software (Ansys) in modelling and analyzing engineering problems. 42 6 Computer Aided Modelling and Analysis Lab (18MEEL66) 3. Execute the steps involved in FEA using Ansys software to solve structural and thermal engineering problems. 42 6 Computer Aided Modelling and Analysis Lab (18MEL66) 3. Execute the steps involved in FEA using Ansys software to solve structural and thermal engineering problems. 42 6 Kongeling and Analysis Lab (18MEL66) 5. Report systematically the observations made during FEA.					parameters of wind mills.
41 6 Computer Aided Modelling and Analysis Lab (18MEL66) 1. Understand the use and applications of FEA using Analysis Lab (18MEL66) 42 6 Computer Aided Modelling and Analysis Lab (18MEL66) 1. Understand the steps involved in FEA using Ansys software to solve structural and thermal engineering problems. 42 6 Computer Aided Analysis Lab (18MEL66) 1. Understand the concepts of Inventory supply chain networking including location of ware-houses 5 Understand the concepts of Current trends future of IT infrastructure and E-commerce in Supply Chain Management 41 8 Computer Aided Analysis Lab (18MEL66) 6 Computer Aided Analysis Lab (18MEL66) 1. Understand the use and applications of FEA is the selection of suitable elements for modelling and analyzing engineering problems. 42 6 Computer Aided Analysis Lab (18MEL66) 1. Secure the steps involved in FEA using Ansys software to solve structural and thermal engineering problems.					5. Understand the concepts of tidal power, Ocean
41 6 Computer Aided Modelling and Analysis Lab (18MEL66) 1. Understand the frame work of Supply Chain Management 42 6 Computer Aided Modelling and Analysis Lab (18MEL66) 3. Execute the steps involved in FEA using Analysis of ware to solve structural and thermal engineering problems. 42 6 Computer Aided Modelling and Analysis Lab (18MEL66) 3. Execute the steps involved in FEA using Analysis of ware to solve structural and thermal engineering problems. 42 6 Computer Aided Modelling and Analysis Lab (18MEL66) 3. Execute the steps involved in FEA using Analysis of ware to solve structural and thermal engineering problems. 42 6 Computer Aided Modelling and Analysis Lab (18MEL66) 3. Execute the steps involved in FEA using Analysis of ware to solve structural and thermal engineering problems. 42 6 Computer Aided Modelling and Analysis Lab (18MEL66) 3. Execute the steps involved in FEA using Analysis of ware to solve structural and thermal engineering problems. 42 6 Computer Aided Modelling and Analysis Lab (18MEL66) 3. Execute the steps involved in FEA using Analysis of ware to solve structural and thermal engineering problems. 42 6 Noter the fEA results by correlating with theoretical solutions.					thermal energy conversion, and Geothermal
41 6 Computer Aided Modelling and Analysis Lab (18MEL66) 1. Understand the frame work of Supply Chain Management 42 6 Supply Chain Management (18ME653) 1. Understand the concepts of Inventory, supply, stock, surplus management 41 6 Supply Chain Management (18ME653) 3. Understand the concepts of Inventory, supply, stock, surplus management 4. Understand the concept of supply chain networking including location of ware-houses 5. Understand the concept of current trends future of IT infrastructure and E-commerce in Supply Chain Management 4. Noderstand the use and applications of FEA software (Ansys) in modelling and analyzing engineering problems. 5. 2. Apply the knowledge of FEA in the selection of suitable elements for modelling and analyzing the engineering problems. 6 Computer Aided Modelling and Analysis Lab (18MEL66) 3. Execute the steps involved in FEA using Ansys software to solve structural and thermal engineering problems. 4. Validate the FEA results by correlating with theoretical solutions. 4. Validate the FEA results by correlating with theoretical solutions. 6 Secont systematically the observations made during FEA. 5. Report systematically the observations made					energy, Biomass and hydrogen energy and their
41 6 Supply Chain Management (18ME653) 1. Understand the frame work of Supply Chain Management 41 6 Supply Chain Management (18ME653) 2. Understand a competitive supply chain using strategies, models, techniques and information technology 3. Understand the concepts of Inventory, supply, stock, surplus management 3. Understand the concept of supply chain networking including location of ware-houses 5. Understand the concept of current trends future of IT infrastructure and E-commerce in Supply Chain Management 4. Understand the use and applications of FEA software (Ansys) in modelling and analyzing engineering problems. 2. Apply the knowledge of FEA in the selection of suitable elements for modelling and analyzing the engineering problems. 3. Execute the steps involved in FEA using Ansys software to solve structural and thermal engineering problems under various boundary conditions. 4. Validate the FEA results by correlating with theoretical solutions. 5. Report systematically the observations made during FEA.					conversion to other useful forms of energy.
41 6 Supply Chain Management (18ME653) Management (18ME653) 2. Understand a competitive supply chain using strategies, models, techniques and information technology 4. Understand the concepts of Inventory, supply, stock, surplus management (18ME653) 3. Understand the concepts of Inventory, supply, stock, surplus management 4. Understand the concept of supply chain networking including location of ware-houses 5. Understand the concepts of current trends future of IT infrastructure and E-commerce in Supply Chain Management 4. Understand the use and applications of FEA software (Ansys) in modelling and analyzing engineering problems. 2. Apply the knowledge of FEA in the selection of suitable elements for modelling and analyzing the engineering problems. 4. Apply the knowledge of FEA in the selection of suitable elements for modelling and analyzing the engineering problems. 3. Execute the steps involved in FEA using Ansys software to solve structural and thermal engineering problems under various boundary conditions. 4. Validate the FEA results by correlating with theoretical solutions. 4. Validate the FEA results by correlating with theoretical solutions.					1. Understand the frame work of Supply Chain
41 6 Supply Chain Management (18ME653) 2. Understand a competitive supply chain using strategies, models, techniques and information technology 3. Understand the concepts of Inventory, supply, stock, surplus management 3. Understand the concept of supply chain networking including location of ware-houses 5. Understand the concept of current trends future of IT infrastructure and E-commerce in Supply Chain Management 42 6 6 Computer Aided Modelling and Analysis Lab (18MEL66) 7 2. Apply the knowledge of FEA in the selection of suitable elements for modelling and analyzing the engineering problems. 3. Execute the steps involved in FEA using Ansys software to solve structural and thermal engineering problems under various boundary conditions. 4. Validate the FEA results by correlating with theoretical solutions. 4. Validate the FEA results by correlating with theoretical solutions.					Management
41 41 41 41 41 41 41 4 4 4 4 4 4 4 4 4					2. Understand a competitive supply chain using
41 6 Supply Chain Management (18ME653) 3. Understand the concepts of Inventory, supply, stock, surplus management 4. Understand the concept of supply chain networking including location of ware-houses 5. Understand the concepts of current trends future of IT infrastructure and E-commerce in Supply Chain Management 5. Understand the use and applications of FEA 1. Understand the use and applications of FEA 6 Computer Aided Modelling and Analysis Lab (18MEL66) 3. Execute the steps involved in FEA using Ansys oftware to solve structural and thermal engineering problems. 3. Execute the steps involved in FEA using Ansys oftware to solve structural and thermal engineering problems under various boundary conditions. 3. Execute the steps involved in FEA using Ansys oftware to solve structural and thermal engineering problems under various boundary conditions. 4. Validate the FEA results by correlating with theoretical solutions. 5. Report systematically the observations made during FEA.					strategies, models, techniques and information
41 6 Supply Chain Management (18ME653) 3. Understand the concepts of Inventory, supply, stock, surplus management 4. Understand the concept of supply chain networking including location of ware-houses 5. Understand the concepts of current trends future of IT infrastructure and E-commerce in Supply Chain Management 4. Numerstand the use and applications of FEA 5. Understand the use and applications of FEA 6 Computer Aided Modelling and Analysis Lab (18MEL66) 3. Execute the steps involved in FEA using Ansys software to solve structural and thermal engineering problems. 3. Execute the FEA results by correlating with theoretical solutions. 4. Validate the FEA results by correlating with theoretical solutions. 5. Report systematically the observations made during FEA.					technology
41 6 Management (18ME653) stock, surplus management 4. Understand the concept of supply chain networking including location of ware-houses 5. Understand the concepts of current trends future of IT infrastructure and E-commerce in Supply Chain Management 4. Understand the use and applications of FEA software (Ansys) in modelling and analyzing engineering problems. 4. Computer Aided Modelling and Analysis Lab (18MEL66) 3. Execute the steps involved in FEA using Ansys software to solve structural and thermal engineering problems under various boundary conditions. 4. Validate the FEA results by correlating with theoretical solutions. 5. Report systematically the observations made during FEA.				Supply Chain	3. Understand the concepts of Inventory, supply,
42 6 Computer Aided Modelling and Analysis Lab (18MEL66) 3. Execute the steps involved in FEA using Analysing the engineering problems. 42 6 Computer Aided Modelling and Analysis Lab (18MEL66) 3. Execute the steps involved in FEA using Analysing the engineering problems. 42 6 Computer Aided Modelling and Analysis Lab (18MEL66) 3. Execute the steps involved in FEA using Analysing the engineering problems. 42 6 Computer Aided Modelling and Analysis Lab (18MEL66) 3. Execute the steps involved in FEA using Analysis software to solve structural and thermal engineering problems under various boundary conditions. 4. Validate the FEA results by correlating with theoretical solutions. 5. Report systematically the observations made during FEA.	41		6	Management (18ME653)	stock, surplus management
42 6 Computer Aided Modelling and Analysis Lab (18MEL66) 1. Understand the concepts of current trends future of IT infrastructure and E-commerce in Supply Chain Management 42 6 Computer Aided Modelling and Analysis Lab (18MEL66) 1. Understand the use and applications of FEA in the selection of suitable elements for modelling and analysing the engineering problems. 42 7 1. Computer Aided Modelling and Analysis Lab (18MEL66) 41 8 1. Execute the steps involved in FEA using Ansys software to solve structural and thermal engineering problems under various boundary conditions. 42 4 4 4 42 4 5 4 42 4 6 6 4 4 4 4 4 6 4 4 4 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					4. Understand the concept of supply chain
42 6 6 Computer Aided Modelling and Analysis Lab (18MEL66) 3. Execute the steps involved in FEA using Ansys software to solve structural and thermal engineering problems. 42 6 Computer Aided Modelling and Analysis Lab (18MEL66) 3. Execute the steps involved in FEA using Ansys software to solve structural and thermal engineering problems. 42 6 Nodelling and Analysis Lab (18MEL66) 3. Execute the steps involved in FEA using Ansys software to solve structural and thermal engineering problems under various boundary conditions.					networking including location of ware-houses
42 6 Image: Computer Aided Modelling and Analysis Lab (18MEL66) 1. Understand the use and applications of FEA software (Ansys) in modelling and analyzing engineering problems. 42 6 Computer Aided Modelling and Analysis Lab (18MEL66) 3. Execute the steps involved in FEA using Ansys software to solve structural and thermal engineering problems under various boundary conditions. 42 6 Computer Aided Modelling and Analysis Lab (18MEL66) 3. Execute the steps involved in FEA using Ansys software to solve structural and thermal engineering problems under various boundary conditions.					5. Understand the concepts of current trends
42 Image: Computer Aided Modelling and Analysis Lab (18MEL66) Supply Chain Management 42 Image: Computer Aided Modelling and Analysis Lab (18MEL66) Image: Computer Aided Modelling and Analysis Computer Aided Modelling and Analysis Lab (18MEL66) Image: Computer Aided Modelling and Analysis Computer Aided Modelling and Analysis Computer Aided Modelling and Analysis Lab (18MEL66) 42 Image: Computer Aided Modelling and Analysis Lab (18MEL66) Image: Computer Aided Modelling and Analysis Computer Aided Modelling and Analysis Computer Aided Modelling and Analysis Lab (18MEL66) 43 Image: Computer Aided Modelling and Analysis Computer Aided Modelling and Analysis Lab (18MEL66) Image: Computer Aided Modelling and Analysis Computer Aided Provide Analysis Software to solve structural and thermal engineering problems under various boundary conditions. 4. Validate the FEA results by correlating with theoretical solutions. 5. Report systematically the observations made during FEA.					future of IT infrastructure and E-commerce in
 42 6 Computer Aided Modelling and Analysis Lab (18MEL66) 6 Computer Aided Modelling and Analysis Lab (18MEL66) 6 Report systematically the observations made during FEA. 					Supply Chain Management
426Computer Aided Modelling and Analysis Lab (18MEL66)Software (Ansys) in modelling and analyzing engineering problems.426Computer Aided Modelling and Analysis Lab (18MEL66)3. Execute the steps involved in FEA using Ansys software to solve structural and thermal engineering problems under various boundary conditions.4. Validate the FEA results by correlating with theoretical solutions.5. Report systematically the observations made during FEA.					1. Understand the use and applications of FEA
426Computer Aided Modelling and Analysis Lab (18MEL66)92. Apply the knowledge of FEA in the selection of suitable elements for modelling and analysing the engineering problems.3. Execute the steps involved in FEA using Ansys software to solve structural and thermal engineering problems under various boundary conditions.4. Validate the FEA results by correlating with theoretical solutions.5. Report systematically the observations made during FEA.					software (Ansys) in modelling and analyzing
42 6 Computer Aided Modelling and Analysis Lab (18MEL66) 2. Apply the knowledge of FEA in the selection of suitable elements for modelling and analysing the engineering problems. 3. Execute the steps involved in FEA using Ansys software to solve structural and thermal engineering problems under various boundary conditions. 4. Validate the FEA results by correlating with theoretical solutions. 5. Report systematically the observations made during FEA.					engineering problems.
42 42 42 42 42 42 42 42 42 42					2. Apply the knowledge of FEA in the selection
42 42 42 6 Computer Aided Modelling and Analysis Lab (18MEL66) 6 Kernel August					of suitable elements for modelling and analysing
42 Computer Aided 6 Computer Aided Modelling and Analysis Lab (18MEL66) 42 Computer Aided 6 Modelling and Analysis Lab (18MEL66) 4. Validate the FEA results by correlating with theoretical solutions. 5. Report systematically the observations made during FEA.					the engineering problems.
42 6 Modelling and Analysis Lab (18MEL66) software to solve structural and thermal engineering problems under various boundary conditions. 4. Validate the FEA results by correlating with theoretical solutions. 4. Validate the FEA results by correlating with theoretical solutions. 5. Report systematically the observations made during FEA.					3. Execute the steps involved in FEA using Ansys
engineering problems under various boundary conditions. 4. Validate the FEA results by correlating with theoretical solutions. 5. Report systematically the observations made during FEA.	42		6	Modelling and Analysis	software to solve structural and thermal
conditions. 4. Validate the FEA results by correlating with theoretical solutions. 5. Report systematically the observations made during FEA.					engineering problems under various boundary
4. Validate the FEA results by correlating with theoretical solutions. 5. Report systematically the observations made during FEA.					conditions.
theoretical solutions. 5. Report systematically the observations made during FEA.					4. Validate the FEA results by correlating with
5. Report systematically the observations made during FEA.					theoretical solutions.
during FEA.					5. Report systematically the observations made
					during FEA.
Heat Transfer Leb 1. Understand the basic modes of heat transfer,				Haat Transfor I ab	1. Understand the basic modes of heat transfer,
43 6 (18MEL67) conduction with and without internal heat	43		6	Heat Transfer Lab (18MEL67)	conduction with and without internal heat

	nsulation and
extended surfaces with the practical	l utilities.
2. Understand concept and mechan	ism of natural
and forced convection and also	the various
empirical correlations used in differ	ent fluid flow
situations.	
3. Understand the design and	performance
analysis of heat exchangers and	their practical
applications, VCR, Air Condit	ioners, mass
transfer theories, Condensation	on, Boiling
phenomena and mechanism of radia	ation.
1. Understand the control system	ns, its types,
control actions and formulate	the system
governing equations for Mechanic	cal, Electrical
and Electronic models.	
2. Identify the order of the syst	em based on
response of the system.	
Control Engineering 3. Calculate the gain of the system	n using block
44 7 Control Engineering (18ME71) diagram and signal flow graphs	
4. Determine the stability of tran	sfer functions
using Hurwitz criterion, Routh's	criterion and
root Locus technique in complex de	omain.
5. Analyse the stability of linear fee	dback control
systems in frequency domain usin	g polar plots,
Nyquist and Bode plots.	
1. Able to define Automation, CIM	I, CAD, CAM
and explain the differences be	etween these
concepts	
2. Explain the basics of automated a	manufacturing
Computer Aided Design and industries through mathematical	models and
45 7 Manufacturing analyze different types of automate	d flow lines
(18ME72) 3. Analyze the automated flow li	nes to reduce
down time and enhance productivit	У
4. Explain the use of different	ent computer
annlications in manufacturing and	able to prepare

				part programs for simple jobs on CNC machine
				tools and robot programming
				5. Visualize and appreciate the modern trends in
				Manufacturing like additive manufacturing,
				Industry 4.0 and applications of Internet of Things
				leading to Smart Manufacturing
				1. Select proper materials and manufacturing
				processes for designing products/components by
				applying the relevant principles for ease and
				economic production.
				2. Identify faulty design factors leading to
				increased costs in producing mechanical
				components.
				3. Apply appropriate design tolerances –
46		Design for Manufacture	dimensional, geometric and true position	
		7	(18ME731)	tolerances for the production processes of
				mechanical components.
				4. Apply the concepts related to reducing
				machined areas, simplification by amalgamation
				and separation, clampability, accessibility, etc., in
				the design of mechanical components.
				5. Analyze the design of castings, weldments,
				forgings, powder metallurgy components and
				suggest design modifications to reduce the cost.
				1. To identify potential areas for automation and
				justify need for automation
				2. To select suitable major control components
				required to automate the process or an activity
			Automation and	3. To study the various parts of robots and fields
47		7	Robotics (18ME732)	of applications of robotics
				4. To perform the spatial transformations,
				Analyze forward and inverse kinematics
				5. To write the robot programming codes and
				control of robots for various applications

				1. Understand the meaning, definitions, scope,
				need, phases and techniques of operations
			research. Formulate as L.P.P and derive optimal	
				solutions to linear programming problems by
				graphical method,
				2. Simplex method, Big-M method and Dual
				Simplex method.
				3. Formulate as Transportation and Assignment
				problems and derive optimum solutions for
				transportation, Assignment and travelling
			Operations Research	salesman problems.
48		7	(18ME735)	4. Solve waiting line problems for M/M/1 and
				M/M/K queuing models. Construct network
				diagrams and determine critical path, floats f
				or deterministic and PERT networks including
				crashing of Networks.
				5. Solve problems on game theory for pure and
				mixed strategy under competitive environment.
				Determine minimum processing times for
				sequencing of n jobs-2 machines, n jobs-
				3 machines jobs-m machines and 2 jobs-n
				machines using Johnson's algorithm.
				1. Demonstrate the knowledge of the broad range
				of AM processes, devices, capabilities, and
				materials that are available.
				2. Apply the concepts of the various additive
				manufacturing processes to design and create
			Additive Manufacturing	components that satisfy product
49		7	(18ME741)	development/prototyping requirements.
				3. Apply the concepts of additive manufacturing
				to design and create components that satisfy
				product development/prototyping requirements,
				using advanced/additive manufacturing devices
				and processes.

				4. Understand the various software tools,
				processes, and techniques that enable
				advanced/additive manufacturing.
				5. Understand the latest trends and business
				opportunities in additive manufacturing.
				1. Illustrate various components of mechatronics
				system.
			Machatronics	2. Access various control systems used in
50		7	(18ME744)	automation.
				3. Develop mechanical, hydraulic, pneumatic and
				electrical control system
	•			1. Understand the different forms and sources of
				energy and their applications and analyze the
			Energy and Environment (18ME751)	energy scenario of India and World.
				2. Understand the principles of energy
		7		management, storage and estimate the energy
				demand and compute energy pricing.
51				3. Understand the purpose and methodology of
				energy audit.
				4. Understand the structure, function and energy
				flow in various ecosystems and analyze the need
				of public awareness regarding environment.
				5. Understand the concept of environmental
				pollution along with social issues and acts.
				1. Identify different parts of an automobile and its
				working.
				2. Understand the working Transmission and
				Braking system.
			Automotive	3. Understand the working of Steering and
52		7	Engineering (18MF752)	Suspension Systems.
			(100012752)	4. Understand the working of Fuel supply systems
				and Turbo Chargers.
				5. Understand the Government Stipulations on
				Automobile Emissions and its control.
1	1			

				1. Understand CNC lathe part programming
				techniques for turning, facing, chamfering,
				grooving, step turning, taper turning, circular
				interpolation, etc.
				2. Generate CNC Mill part programming for PTP
				motions, line motions, contour motions, pocket
				milling, etc.
		-	Computer Integrated	3. Apply canned cycles for drilling, boring,
53		1	Manufacturing Lab (18MEL76)	tapping, facing operations, etc.
				4. Apply simulation techniques for tool path
				generation for different machining operations of
				small components using CNC lathe and milling
				machines.
				5. Understand and write programs for Robot
				control, understand the operating principles of
				hydraulics and pneumatic systems.
				1. Develop the skills to measure various machine
				parameters to prevent the machinery failure.
				2. Record the data, analyze and interpret the
54	7	Design Lab (18MEL77)	experimental results.	
				3. Correlate theoretical concepts with
				experimental outcomes.
				4. Report systematically the observations made.
				1. Identify the real time engineering problem and
				formulate solution with the application of modern
				tool usage to cater industrial and societal needs.
				2. Perform effectively as a member of group and
55		7	Project Work Phase - 1	demonstrate highest level of professionalism.
		(18MEP78)	3. Carryout analysis of the developed solution	
				from the prospective of technical and economic
				feasibility and sustainability
				4. Communicate effectively to the stake holders
				about the project outcomes

				5. Inculcate the ability to think innovatively and
				engage in lifelong learning in technological
				advancements
				1. Explain the fundamental construction,
				operating features of all the elements of a Coal
				based thermal power plant
				2. Demonstrate the constructional & operating
				principles of Solar & Biomass systems
56		8	Energy Engineering	3. Illustrate constructional & working procedures
			(10WL01)	of systems using renewable energy sources like
				wind, geothermal, tidal & ocean thermal.
				4. Execute the operations related to the
				estimation, installation and operations of a Hydel
				& a Nuclear Power plant
			CNC Machine Tools (18ME821)	1. Understand evolution, classification and
				principles of CNC machine tools.
				2. Learn constructional details of CNC machine
				tools, selection of standard components used for
				CNC machine tools for accuracy and productivity
				enhancement.
				3. Select drives and positional transducers for
57		8		CNC machine tools.
				4. Apply CNC programing concepts of for two
				axis turning centers and three axis vertical milling
				centers to generate programs different
				components.
				5. Analize and select tooling and work holding
				devices for different components to be machined
				on CNC machine tools
				1. To identify the different parts of an automobile
			Automobile	and it's working and understand the working of
58		8	Engineering	Cooling and lubrication systems
			(18ME824)	2. To understand the working of transmission and
				braking system

				3. To comprehend the working of steering and
				Ignition system
				4. To learn various types of fuels and fuel
				injection systems
				5. To know the cause of automobile emissions, its
				effect on environment and methods to reduce the
				emission
				1. Function effectively as an individual to apply
				the knowledge of engineering skills and make
		8	Technical Seminar (18MES84)	effective presentation on engineering technology.
				2. Review, prepare and present the technological
				developments in the field of mechanical
59				engineering
				3. Design the documentation and write effective
				technical reports on seminar to describe, interpret
				and analyse technical issues and to improve the
				presentation and communication skills.
				1.Acquire fundamental knowledge about a
				technical domain
60		0		2.Design the model /Test process related to the
		8	Internship (18MEI85)	work undertaken
				3.Analyze the results of the work carried out
				4.Demonstrate the professional skill sets

2021 Scheme

Sl.No	Branch	Sem	Subject	CO,S
1	MECH	3	Transform Calculus, Fourier Series and Numerical Techniques (21MAT31)	 To solve ordinary differential equations using Laplace transform Demonstrate the Fourier series to study the behaviour of periodic functions and their applications in system communications, digital signal processing and field theory

				3. To use Fourier transforms to analyze
				problems involving continuous-time signals
				and to Apply Z-Transform techniques to solve
				difference equations
				4. To solve mathematical models represented
				by initial or boundary value problems
				involving partial differential equations
				5. Determine the extremals of functionals
				using calculus of variations and solve
				problems arising in dynamics of rigid bodies
				and vibrational analysis.
				1. To provide detailed information about the
			Metal Casting, Forming & Joining Processes (21ME32)	Molding process
				2. To provide Knowledge of various casting
				process in Manufacturing
		3		3. To provide in depth knowledge on
				metallurgical aspects during solidification of
2				metal and alloys and to acquaint fundamentals
				of various metal forming process along with
				Quality aspects
				4. To impart Fundamental knowledge of
				Welding process
				5. To impart the knowledge of various Joining
				process used in Manufacturing
	_			1. Understand the atomic arrangement in
				crystalline materials, describe the periodic
				arrangement of atoms in terms of unit cell
				parameters and various kinds of defects
3		2	Material Science &	2. Understand the importance of phase
		3	Engineering (21ME33)	diagrams and the phase transformations
				3. Know various heat treatment methods for
				controlling the microstructure
				4. Understand surface coating technologies
				and powder metallurgy

				5. Apply the method of materials selection,
				material data and knowledge sources for
				computer aided selection of materials
				1. Understand the fundamentals of
				thermodynamics and evaluate energy
				interactions across the boundary of
			Thermodynamics (21ME34)	thermodynamic systems and the concept of
				temperature, Zeroth law of thermodynamics
				and temperature Scales.
				2. Understand the concepts of work and heat
		3		and apply the knowledge to interpret work and
				heat interactions in various cyclic and non-
				cyclic processes.
				3. State the 1st and 2nd laws of
				thermodynamics and Apply the knowledge of
				1st and 2nd laws of thermodynamics to
4				evaluate open and closed systems. Understand
				the concept of entropy, reversibility and
				irreversibility to solve numerical problems.
				4. Interpret the behavior of pure substances and
				its application in practical problems and
				understand the concept of available and
				unavailable energy.
				5. Recognize differences between ideal and
				real gases and evaluate thermodynamic
				properties of ideal and real gas mixtures using
				various relations and apply the knowledge to
				understand the process of combustion, analyze
				the performance of gas power cycles and
				extend the study to gas turbines.
		3	Constitution of India and Professional Ethics (21CIP37)	1. Students will be able to understand the basic
				structure of constitution and strategies beyond
5				which it cannot be amended.
5				2. Students can understand the Execution of
				fundamental rights and hence the progress of
		1	1	1

				nation by formation of government and
				governmental policies through amendment
				procedure.
				3. Students can understand the importance of
				ethical values and responsibility of an
				engineer.
	-		Machine Drawing and GD&T (21MEL35)	1. Understand the use and applications of CAD
				software (Solid Edge) in Machine drawing,
				modeling and assembling.
				2. Apply the knowledge of orthographic
				projections in the reading Machine drawings.
				3. Execute the steps involved in orthographic
6		3		projections to draw different views of machine
				components with suitable scale.
				4. Create the models of machine drawings
				using CAD software.
				5. Report systematically the different views
				and models of machine drawings.
	-	3	Social Connect and Responsibility (21SCR36)	1. Understand social responsibility
7				2. Practice sustainability and creativity
				3. Showcase planning and organizational
				skills
		4	Maths for Communication Engineers (21MAT41)	1. Use the concept of Analytic function and
				complex potential to solve the problems in
				electromagnetic theory and complex
				integration in airfoil and image processing.
				2. Obtain series solution ODEs
0				3. Fit an appropriate mathematical model for
8				the statistical data by using correlation and
				regression analysis.
				4. Apply discrete and continuous probability
				distribution in engg. field
				5. Construct joint probability distribution
				and testing the hypothesis
7		3	Social Connect and Responsibility (21SCR36) Maths for Communication Engineers (21MAT41)	 components with suitable scale. 4. Create the models of machine drawin using CAD software. 5. Report systematically the different view and models of machine drawings. 1. Understand social responsibility 2. Practice sustainability and creativity 3. Showcase planning and organization skills 1. Use the concept of Analytic function and complex potential to solve the problems electromagnetic theory and compli- integration in airfoil and image processing. 2. Obtain series solution ODEs 3. Fit an appropriate mathematical model for the statistical data by using correlation and regression analysis. 4. Apply discrete and continuous probability distribution in engg. field 5. Construct joint probability distributi- and testing the hypothesis

9		4	Machining Science and Jigs & Fixtures (21ME42)	 Students are understand the machining operations using Lathe, Milling, Shaper, Drilling and Grinding Machines. Understand the concepts of CNC. Students under the forces in metal cutting. Students understand the Machinability, Tool Wear and Tool Life Concepts Students understand the various Non- conventional machining and hybrid machining processes.
				5. Students understand the design of Jigs and Fixtures for various machining operations
10		4	Fluid Mechanics (21ME43)	 Define & determine the properties of fluid and the Static & Kinematic properties of the fluid. Explain the guiding Principles & laws of Fluid Dynamics and its application to measure flow discharge. Distinguish between types of flow based upon its viscosity and apply relevant principles in problem solving Explain the concept of boundary layer, Laminar & turbulent flows in fluid flow and techniques of dimensional analysis to form dimensionless numbers in terms of input output variables. Demonstrate the ability to determine properties of compressible fluid & solve fluid flow problems in a compressible medium.
11		4	Mechanics of Materials (21ME44)	 Understand the fundamental concepts of mechanics of materials and principle stress, strains, elastic constants, volumetric strains and thermal stress. Analyse stress on inclined plane under uniaxial, bi axial loading condition

				3. Evaluate the formula for measuring the
				deflexion of beams
				4. Draw the shear force and bending moment
				diagrams for beams under different loading
				conditions. And to evaluate the behaviour of
				shafts under pure torsion.
				5. Design columns under buklling with
				different boundary conditions.
			Mechanical Measurements & Metrology Lab (21MEL46)	1. Develop necessary skills to use different
				measuring instruments used in mechanical
				measurements and calibrate them.
				2. Analyse and interpret the measurement
12		4		results to draw valid conclusions.
				3. Clarify the theoretical concepts with
				experimental outcomes.
				4. Report the experimental details and
				observations systematically.
		4	Spread Sheets for Engineers (21ME481)	1. To do regression analysis by using functions
				and charts.
				2. To do iterative solutions to find roots,
				optimization and regression.
13				3.Can perform matrix operation
				4. Understand and create subroutines and
				macros using VBA and UDF.
				5. abled to do numerical integrations and solve
				equations.
		4	Complex Analysis, Probability & Linear Programming (21MATME41)	1. Use the concepts of analytic function and
				complex potentials to solve the problems
				arising in fluid flow.
				2. Utilize conformal transformation and
				complex integral arising in aerofoil theory,
				fluid flow
				visualization and image processing.
				3. Apply discrete and continuous probability
				distributions in analyzing the probability
	1	1	1	1

				models
				arising in engineering field.
				4.Analyze and slove linear programming
				modles of real-life situation and slove LPP by
				the simplex method
				5. Learn technique to slove transportation and
				assignment problems.
				1. Solve rank of matrix by elementary row
		4	Additional Mathematics I (21MATDIP41)	operations - Echelon form. Consistency of
				system of linear equations - Gauss elimination
				method
				2. Demonstrate various physical models
				through 2 nd and higher order linear differential
				equation and solve such equations.
				3. Construct a variety of Partial differential
				equation and solution by direct integration,
				method of separation of variables.
				4. Apply the knowledge of numerical methods
				,infinite series and series solution of ordinary
				differential equation to explain various
				physical and engineering problems
		4	Universal Human Values (21UH49)	1. Holistic vision of life and Socially
				responsible behaviour
				2. Environmentally responsible work
				and Ethical human conduct
				3. Having Competence and Capabilities for
				Maintaining Health and Hygiene
				4. Appreciation and aspiration for excellence
				(merit) and gratitude for all
				1